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Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

(Images courtesy xkcd.org)

Why?

I Efficient: linear, embarrassingly parallel operations

I Appears to resist quantum attacks, contra [Shor’97]

I Security from mild worst-case assumptions

I Solutions to ‘holy grail’ problems in crypto: FHE and related
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This Talk

1 Historical and mathematical background

2 Framework for lattice-based encryption/key exchange

3 Cryptanalysis, parameters, and NIST candidates
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Part 1:

Background
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A Brief History

1978– Rise and fall of ‘knapsack’ cryptosystems

1996-7 Ajtai’s worst-case/average-case reduction, one-way function
& (with Dwork) public-key encryption (very inefficient)

1996 NTRU efficient ring-based encryption (heuristic security)

2002 Micciancio’s ring-based one-way function
with worst-case hardness (no encryption)

2005 Regev’s LWE: encryption with worst-case hardness
(efficient-ish)

2010– Ring/Module-LWE: efficient encryption, worst-case hardness

2015– Practical implementations of (Ring/Module-)LWE encryption
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What’s a Lattice?

I A periodic ‘grid’ in (subgroup of) Zm.

I Basis B = {b1, . . . ,bm} :

L =
m∑
i=1

(Z · bi)

(Other representations as well. . . )

O

Hard Lattice Problems
I ‘Find/detect short’ nonzero lattice vectors.

I Decode a point ‘somewhat near to’ the lattice.

I Both seem to require 2Ω(m) time (and space).
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Shortest Vector Problem: SVPγ and GapSVPγ

Approximation problems with factor γ = γ(n):

Search: given basis B, find nonzero v ∈ L s.t. ‖v‖ ≤ γ · λ1(L).

Decision: given basis B and real d, decide whether

λ1(L) ≤ d OR λ1(L) > γ · d.

Clearly GapSVPγ ≤ SVPγ , but the reverse direction is open!

Minkowski: min
i
‖b̃i‖ ≤ λ1(L) ≤

√
n · det(L)1/n, but usually very loose.

γ · λ1

b1

b2

λ1

γdd

b1

b2
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Bounded-Distance Decoding (BDD)

Search: given basis B, point t, and real d < λ1/2 s.t. dist(t,L) ≤ d,
find the (unique) v ∈ L closest to t.

Decision: given basis B, point t, and real d, decide whether

dist(t,L) ≤ d OR > γ · d.

t
b1

b2
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A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 ≈ 〈s , a1〉 mod q

a2 ← Znq , b2 ≈ 〈s , a2〉 mod q

...

am ← Znq , bm ≈ 〈s , am〉 mod q

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’

a1 ← Znq , b1 = 〈s , a1〉+ e1 ∈ Zq
a2 ← Znq , b2 = 〈s , a2〉+ e2 ∈ Zq

...

am ← Znq , bm = 〈s , am〉+ em ∈ Zq
e.g. width

√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·


︸ ︷︷ ︸

m

,
(
· · · bt · · ·

)
= stA+ et

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·


︸ ︷︷ ︸

m

,
(
· · · bt · · ·

)
= stA+ et

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·


︸ ︷︷ ︸

m

,
(
· · · bt · · ·

)
= stA+ et

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



A Central Hard Problem: Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q, error distribution χ

I Search: find secret s ∈ Znq given many ‘noisy inner products’· · · A · · ·


︸ ︷︷ ︸

m

,
(
· · · bt · · ·

)
= stA+ et

e.g. width
√
n� q, ‘rate’ α

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard

(n/α)-approx worst case
GapSVP etc.

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Classical reductions for alt. problems & params [Peikert’09,BLPRS’13]

9 / 22



LWE as a Lattice Problem

· · · · A · · · ·


︸ ︷︷ ︸

m

∈ Zn×mq , bt = stA+ et OR b← Zmq

I Lattice interpretation:

L(A) = {zt ≡ stA mod q}

Finding s, e: BDD on L(A).

Distinguishing b from b: decision-BDD.

I WLOG, ‘normal form’ short s← χn with
entries from error distribution [ACPS’09]

b

b
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Learning With Rounding [BanerjeePeikertRosen’12]

I Generate errors deterministically by rounding Zq to
a “sparser” subset (e.g., a subgroup).

Let p < q and define bxep = b(p/q) · xe mod p.
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I Decision-LWR problem: for secret s ∈ Znq , distinguish m pairs

ai ← Znq , b〈s,ai〉ep ∈ Znq × Zp from uniform.

LWE conceals low-order bits of 〈s,ai〉 by adding small random error.
LWR just discards those bits instead.

I [BPR’12,AKPW’13] proves that LWE ≤ LWR for q ≥ p · poly(m) . . .

. . . but LWR appears hard for more aggressive parameters.

How aggressive? Not well understood.
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LWE/LWR are (Extremely) Versatile

What kinds of crypto can we do with LWE/LWR?

4 Key Exchange, Public Key Encryption

4 Oblivious Transfer

4 Chosen Ciphertext-Secure Encryption (w/o random oracles)

4 Symmetric Crypto: (Constrained & Key-Homomorphic) PRFs

44 Identity-Based Encryption (w/o RO)

44 Hierarchical ID-Based Encryption (w/o RO)

44 NIZK for any NP language

!!! Fully Homomorphic Encryption

!!! Attribute-Based & Predicate Encryption for arbitrary policies

and much, much more. . .
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LWE-Based Encryption/Key Ex [Regev’05,PVW’08,LPS’10,LP’11,. . . ]

A← Zn×nq

(can be shared and/or
expanded from a seed)

short R← χk×n
U ≈ RA

(public key)

V ≈ AS

(ciphertext ‘preamble’)

short S← χn×`

msg M ∈ Zk×`p

C ≈ US+ q
p ·M

(ciphertext ‘payload’)

(A,U,V,C)

by decision-LWE
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Design Considerations

1 System as shown is only CPA secure. Good for ephemeral key-ex, but
needs a Fujisaki–Okamoto-like transform for CCA-secure KEM.

An active area of research; mostly orthogonal to other design aspects.

2 Share A across many public keys?

May allow (expensive) preprocessing, making it easier to break many
public keys at once.

3 Use random errors, or deterministic rounding?

Rounding makes keys/ciphertexts smaller; security is less understood.

4 How large can/should errors be?

F All else being equal, larger |errors|/q =⇒ more security.
F But need entries of

RE−E′S+E′′

to have magnitudes < q
2p , with high probability. So q > p|errors|2.

5 What is an acceptable decryption failure probability?

Failures can leak secret; address ‘large-error’ ciphertexts [DVV’18].
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Rings for Efficiency

I Matrices A ∈ Zn×nq ,R,S etc. were over the mod-q integer ring Zq.
So sizes and computations grow quadratically (at least).

I À la NTRU, instead use lower-dim matrices over a polynomial ring Rq.

E.g., Rq = Zq[X]/(Xd +1) for power-of-two d (the 2dth cyclotomic).

I Extreme n = 1 is Ring-LWE/LWR [LPR’10]: for secret s ∈ Rq, pairs

ai ← Rq , bi ≈ s · ai ∈ Rq.

I Intermediate n ≥ 2 is Module-LWE/LWR [BGV’12,LS’15]. E.g., for
secret s = (s1, s2) ∈ R2

q ,

A =

(
a1,1 a1,2

a2,1 a2,2

)
∈ R2×2

q , b ≈ sA ∈ R2
q from uniform.

I Sizes and computations can now grow only (quasi-)linearly in total
dimension, thanks to FFT-like techniques.

Also (weaker) worst-case hardness theorems based on ideal lattices.
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I À la NTRU, instead use lower-dim matrices over a polynomial ring Rq.

E.g., Rq = Zq[X]/(Xd +1) for power-of-two d (the 2dth cyclotomic).

I Extreme n = 1 is Ring-LWE/LWR [LPR’10]: for secret s ∈ Rq, pairs

ai ← Rq , bi ≈ s · ai ∈ Rq.

I Intermediate n ≥ 2 is Module-LWE/LWR [BGV’12,LS’15]. E.g., for
secret s = (s1, s2) ∈ R2

q ,

A =

(
a1,1 a1,2

a2,1 a2,2

)
∈ R2×2

q , b ≈ sA ∈ R2
q from uniform.

I Sizes and computations can now grow only (quasi-)linearly in total
dimension, thanks to FFT-like techniques.

Also (weaker) worst-case hardness theorems based on ideal lattices.

16 / 22



NTRU [HoffsteinPipherSilverman’96,. . . ]

I Ring-LWE public keys (a, b) satisfy the inhomogeneous relation

a · s− b ≈ 0 ∈ Rq.

I NTRU is more extreme: public key a = r · s−1 ∈ Rq for short r, s,
satisfying the homogeneous relation

a · s ≈ 0.

I Encryption is similar: choose short t and send c ≈ t · a+ q
p ·m ∈ Rq.

(Just one ring element!)

Decryption:
c · s ≈ t · a · s+ q

p ·m · s ≈
q
p ·m · s,

from which we can recover m.
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Part 3:

Cryptanalysis, Parameters, and
NIST Candidates
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Lattice Attacks

I Standard approach: given [A | b = As+ e], find the (unique mod ±)
‘unusually short’ vector (s, e, 1) in the lattice

L = {x : [A | −I | −b] · x = 0}.

Core-SVP Methodology

I Use Block Korkin-Zolotarev (BKZ) with large enough block size b to
succeed. Conservatively lower-bound the cost by a single exact-SVP
computations in dimension b. (BKZ actually makes several SVP calls.)

I E.g., best known classical SVP runtime is heuristically 20.292b+o(b),
with significant o(b) term and 2Ω(b) memory (which are ignored).

Exploit Ring Structure?

I To date, we have only trivial O(d)-factor speedups for
Ring/Module-LWE over d-dimensional rings. (NTRU? Stay tuned. . . )
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Combinatorial/Algebraic Attacks

Arora-Ge’11

I Solves LWE in ≈ nSω time given ≈ nS pairs, where S = |Support(χ)|
is the number of possible integer error values.

(For Ring-LWE/NTRU, the needed number is only ≈ nS−1.)

Number was reduced somewhat using Gröbner bases [ACFP’14].

I This suggests a potential risk of very small (rounding) errors, e.g.,
{0,±1} as in NTRU, NTRU Prime, LAC, ThreeBears—although they
provide few pairs.

(Small errors are the source of their relatively small keys/ciphertexts.)

I FrodoKEM, Kyber, NewHope, SABER use relatively larger errors, at
the cost of larger keys/ciphertexts.

(Indeed, FrodoKEM’s error distributions even conform to a nontrivial
worst-case/average-case reduction.)
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I FrodoKEM, Kyber, NewHope, SABER use relatively larger errors, at
the cost of larger keys/ciphertexts.

(Indeed, FrodoKEM’s error distributions even conform to a nontrivial
worst-case/average-case reduction.)
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NTRU Lattice Attacks

I For NTRU key a = r · s−1 ∈ Rq, homogeneous relation a · s ≈ 0 ∈ Rq
means there are d ‘unusually short’ planted vectors (r ·Xi, s ·Xi) in
the 2d-dimensional NTRU lattice.

I [KirchnerFouque’16] noticed that this structure can significantly speed
up standard lattice attacks, based on the size of the ‘unusual’ gap.

E.g., they easily broke proposed ‘stretched’ FHE parameters, but
‘ordinary’ parameters are so far unaffected.

I These (standard) attacks subsumed all prior ones against NTRU
whose effectiveness had been attributed to the existence of
subrings/homomorphisms.

I This suggests a potential risk of homogeneity and NTRU
lattices—regardless of choice of ring.

I By contrast, BDD problems like (Ring-/Module-)LWE plant a unique
shortest vector, which [KirchnerFouque’16] explicitly recommend.
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Conclusions

I Lattice-based PKE/KEM all work very similarly at heart, but there is
a huge space of design choices and trade-offs.

I Key issues: balance the risk/efficiency trade-offs inherent in:
F randomized versus deterministic rounding,
F size of errors,
F decryption failures,
F ring structure and problem rank over the ring,
F BDD/LWE versus non-unique-SVP/NTRU,
F and much more.

I There are many great questions to investigate!

Thanks!
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